Chapter 8
Text Classification

Introduction
A Characterization of Text Classification
Unsupervised Algorithms
Supervised Algorithms
Feature Selection or Dimensionality Reduction
Evaluation Metrics
Organizing the Classes - Taxonomies
Introduction

Ancient problem for librarians
- storing documents for later retrieval

With larger collections, need to **label the documents**
- assign an unique identifier to each document
- does not allow findings documents on a **subject or topic**

To allow searching documents on a subject or topic
- group documents by common topics
- name these groups with meaningful labels
- each labeled group is call a **class**
Introduction

Text classification

- process of associating documents with classes
- if classes are referred to as categories
 - process is called text categorization
- we consider classification and categorization the same process

Related problem: partition docs into subsets, no labels

- since each subset has no label, it is not a class
- instead, each subset is called a cluster
- the partitioning process is called clustering
 - we consider clustering as a simpler variant of text classification
Introduction

Text classification
- a means to organize information

Consider a large engineering company
- thousands of documents are produced
- if properly organized, they can be used for business decisions
- to organize large document collection, text classification is used

Text classification
- key technology in modern enterprises
Machine Learning

- algorithms that learn patterns in the data
- patterns learned allow making predictions relative to new data
- learning algorithms use training data and can be of three types
 - supervised learning
 - unsupervised learning
 - semi-supervised learning
Machine Learning

- **Supervised learning**
 - training data provided as input
 - training data: classes for input documents

- **Unsupervised learning**
 - no training data is provided
 - Examples:
 - neural network models
 - independent component analysis
 - clustering

- **Semi-supervised learning**
 - small training data
 - combined with larger amount of unlabeled data
The Text Classification Problem

- A classifier can be formally defined
 - \(\mathcal{D} \): a collection of documents
 - \(\mathcal{C} = \{c_1, c_2, \ldots, c_L\} \): a set of \(L \) classes with their respective labels
 - A text classifier is a binary function \(\mathcal{F} : \mathcal{D} \times \mathcal{C} \rightarrow \{0, 1\} \), which assigns to each pair \([d_j, c_p]\), \(d_j \in \mathcal{D}\) and \(c_p \in \mathcal{C}\), a value of
 - 1, if \(d_j\) is a member of class \(c_p\)
 - 0, if \(d_j\) is not a member of class \(c_p\)

- Broad definition, admits supervised and unsupervised algorithms

- For high accuracy, use **supervised algorithm**
 - **multi-label**: one or more labels are assigned to each document
 - **single-label**: a single class is assigned to each document
Classification function \mathcal{F}

- defined as binary function of document-class pair $[d_j, c_p]$
- can be modified to compute degree of membership of d_j in c_p
- documents as *candidates* for membership in class c_p
- candidates sorted by decreasing values of $\mathcal{F}(d_j, c_p)$
Text Classification Algorithms

Unsupervised algorithms we discuss

Unsupervised Algorithms

Clustering
- Partitional Clustering
 - K-means
 - Bisecting K-means
- Agglomerative (Hierarchical) Clustering
 - Single Link
 - Complete Link
 - Average Link

Naive Text Classification
- Text Classification by Direct Match
 - Vector Model
Supervised algorithms depend on a training set

- set of classes with examples of documents for each class
- examples determined by human specialists
- training set used to learn a classification function
Text Classification Algorithms

- The larger the number of training examples, the better is the fine tuning of the classifier.
 - **Overfitting**: classifier becomes specific to the training examples.

- To evaluate the classifier:
 - use a set of **unseen** objects.
 - commonly referred to as **test set**.
Text Classification Algorithms

Supervised classification algorithms we discuss

- Decision Trees
 - DT
- Nearest Neighbors
 - kNN
 - Weighted kNN
- Relevance Feedback
 - Rocchio
 - Rocchio in a Query Zone
- Naive Bayes
 - Binary Independence Naive Bayes
 - Multinomial Naive Bayes
- Support Vector Machines
 - SVM
 - SVM Multiple Classes
 - SVM Multiple Kernels
- Ensemble
 - Stacking-based Ensemble
 - Boosting-based Ensemble
Unsupervised Algorithms
Clustering

- Input data
 - set of documents to classify
 - not even class labels are provided

- Task of the classifier
 - separate documents into subsets (clusters) automatically
 - separating procedure is called clustering
Clustering of hotel Web pages in Hawaii

Input Collection
- Aston Kaha Lani
- The Royal Hawaiian
- Sheraton Kauai Resort
- Sheraton Maui Resort
- Sheraton Keauhou Bay Resort
- Princeville Resort
- Keauhou Beach Resort
- Kona Coast Resort
- Viceroy Santa Monica Beach Hotel
- Hilton Kauai Beach Hotel
- W Honolulu Diamond Head
- Hanalei Colony Resort
- Maui Prince Hotel Makena Resort

Clustering, k = 5
- Princeville Resort
- Aston Kaha Lani
- Hanalei Colony Resort
- Sheraton Kauai Resort
- Hilton Kauai Beach Hotel
- The Royal Hawaiian
- W Honolulu Diamond Head
- Sheraton Maui Resort
- Maui Prince Hotel Makena Resort
- Kona Coast Resort
- Keauhou Beach Resort
- Sheraton Keauhou Bay Resort
- Viceroy Santa Monica Beach Hotel

(a)
Clustering

To obtain classes, assign labels to clusters

Input Collection
- Aston Kaha Lani
- The Royal Hawaiian
- Sheraton Kauai Resort
- Sheraton Maui Resort
- Sheraton Keauhou Bay Resort
- Princeville Resort
- Keauhou Beach Resort
- Kona Coast Resort
- Viceroy Santa Monica Beach Hotel
- Hilton Kauai Beach Hotel
- W Honolulu Diamond Head
- Hanalei Colony Resort
- Maui Prince Hotel Makena Resort

Text Classification, 5 Classes

Kauai
- Princeville Resort
- Aston Kaha Lani
- Hanalei Colony Resort
- Sheraton Kauai Resort
- Hilton Kauai Beach Hotel

Oahu
- The Royal Hawaiian
- W Honolulu Diamond Head

Maui
- Sheraton Maui Resort
- Maui Prince Hotel Makena Resort

Hawaii Island
- Kona Coast Resort
- Keauhou Beach Resort
- Sheraton Keauhou Bay Resort

Other
- Viceroy Santa Monica Beach Hotel

(b)
Clustering

Class labels can be generated automatically

but are different from labels specified by humans

usually, of much lower quality

thus, solving the whole classification problem with no human intervention is hard

If class labels are provided, clustering is more effective
K-means Clustering

Input: number K of clusters to be generated

Each cluster represented by its documents centroid

K-Means algorithm:

- partition docs among the K clusters
 - each document assigned to cluster with closest centroid
- recompute centroids
- repeat process until centroids do not change
K-means in Batch Mode

- **Batch mode:** all documents classified before recomputing centroids

Let document d_j be represented as vector \vec{d}_j

$$\vec{d}_j = (w_{1,j}, w_{2,j}, \ldots, w_{t,j})$$

where

- $w_{i,j}$: weight of term k_i in document d_j
- t: size of the vocabulary
K-means in Batch Mode

1. **Initial step.**
 - select K docs randomly as centroids (of the K clusters)

 $\vec{\Delta}_p = \vec{d}_j$

2. **Assignment Step.**
 - assign each document to cluster with closest centroid
 - distance function computed as inverse of the similarity
 - similarity between d_j and c_p, use cosine formula

 $$sim(d_j, c_p) = \frac{\vec{\Delta}_p \cdot \vec{d}_j}{|\vec{\Delta}_p| \times |\vec{d}_j|}$$
3. Update Step.

- Recompute centroids of each cluster c_p

\[\Delta_p = \frac{1}{\text{size}(c_p)} \sum_{d_j \in c_p} d_j \]

4. Final Step.

- Repeat assignment and update steps until no centroid changes
K-means Online

- Recompute centroids after classification of each individual doc

1. **Initial Step.**
 - select K documents randomly
 - use them as initial centroids

2. **Assignment Step.**
 For each document d_j repeat
 - assign document d_j to the cluster with closest centroid
 - recompute the centroid of that cluster to include d_j

3. **Final Step.** Repeat assignment step until no centroid changes.

- It is argued that online K-means works better than batch K-means
Bisecting K-means

Algorithm

- build a hierarchy of clusters
- at each step, branch into two clusters

Apply K-means repeatedly, with K=2

1. **Initial Step.** assign all documents to a single cluster

2. **Split Step.**
 - select largest cluster
 - apply K-means to it, with $K = 2$

3. **Selection Step.**
 - if stop criteria satisfied (e.g., no cluster larger than pre-defined size), stop execution
 - go back to Split Step
Hierarchical Clustering

Goal: to create a hierarchy of clusters by either

- decomposing a large cluster into smaller ones, or
- agglomerating previously defined clusters into larger ones
Hierarchical Clustering

General hierarchical clustering algorithm

1. Input
 - a set of N documents to be clustered
 - an $N \times N$ similarity (distance) matrix

2. Assign each document to its own cluster
 - N clusters are produced, containing one document each

3. Find the two closest clusters
 - merge them into a single cluster
 - number of clusters reduced to $N - 1$

4. Recompute distances between new cluster and each old cluster

5. Repeat steps 3 and 4 until one single cluster of size N is produced
Hierarchical Clustering

Step 4 introduces notion of similarity or distance between two clusters

Method used for computing \textit{cluster distances} defines three variants of the algorithm

\begin{itemize}
 \item \textit{single-link}
 \item \textit{complete-link}
 \item \textit{average-link}
\end{itemize}
Hierarchical Clustering

- \(\text{dist}(c_p, c_r) \): distance between two clusters \(c_p \) and \(c_r \)
- \(\text{dist}(d_j, d_l) \): distance between docs \(d_j \) and \(d_l \)

Single-Link Algorithm

\[
\text{dist}(c_p, c_r) = \min_{\forall \, d_j \in c_p, d_l \in c_r} \text{dist}(d_j, d_l)
\]

Complete-Link Algorithm

\[
\text{dist}(c_p, c_r) = \max_{\forall \, d_j \in c_p, d_l \in c_r} \text{dist}(d_j, d_l)
\]

Average-Link Algorithm

\[
\text{dist}(c_p, c_r) = \frac{1}{n_p + n_r} \sum_{d_j \in c_p} \sum_{d_l \in c_r} \text{dist}(d_j, d_l)
\]
Naive Text Classification

Classes and their labels are given as input

- no training examples

Naive Classification

- Input:
 - collection \mathcal{D} of documents
 - set $\mathcal{C} = \{c_1, c_2, \ldots, c_L\}$ of L classes and their labels

- Algorithm: associate one or more classes of \mathcal{C} with each doc in \mathcal{D}
 - match document terms to class labels
 - permit partial matches
 - improve coverage by defining alternative class labels i.e., synonyms
Naive Text Classification

Text Classification by Direct Match

1. **Input:**
 - \mathcal{D}: collection of documents to classify
 - $\mathcal{C} = \{c_1, c_2, \ldots, c_L\}$: set of L classes with their labels

2. **Represent**
 - each document d_j by a weighted vector \vec{d}_j
 - each class c_p by a weighted vector \vec{c}_p (use the labels)

3. **For each document $d_j \in \mathcal{D}$ do**
 - retrieve classes $c_p \in \mathcal{C}$ whose labels contain terms of d_j
 - for each pair $[d_j, c_p]$ retrieved, compute vector ranking as

 $$
 sim(d_j, c_p) = \frac{\vec{d}_j \cdot \vec{c}_p}{|\vec{d}_j| \times |\vec{c}_p|}
 $$

 - associate d_j classes c_p with highest values of $sim(d_j, c_p)$
Supervised Algorithms
Supervised Algorithms

- Depend on a **training set**
 - \(\mathcal{D}_t \subset \mathcal{D} \): subset of training documents
 - \(\mathcal{T} : \mathcal{D}_t \times \mathcal{C} \to \{0, 1\} \): training set function
 Assigns to each pair \([d_j, c_p]\), \(d_j \in \mathcal{D}_t\) and \(c_p \in \mathcal{C}\) a value of
 - 1, if \(d_j \in c_p\), according to judgement of human specialists
 - 0, if \(d_j \notin c_p\), according to judgement of human specialists
 - Training set function \(\mathcal{T}\) is used to fine tune the classifier
Supervised Algorithms

The training phase of a classifier

Documents → Training Set → Classifier

Training of the classifier

Human Specified Classification

C1, C2, C3
To evaluate the classifier, use a test set
- subset of docs with no intersection with training set
- classes to documents determined by human specialists

Evaluation is done in a two steps process
- use classifier to assign classes to documents in test set
- compare classes assigned by classifier with those specified by human specialists
Supervised Algorithms

Classification and evaluation processes

Documents in Test Set → indexing → Document Representations → feature selection → Feature Vectors for Documents in Test Set

Classifier

Classes Computed by Classifier

c1

c2

c3

evaluate effectiveness

Classes Specified by Humans

c1

c2

c3

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 34
Supervised Algorithms

Once classifier has been trained and validated
- can be used to classify new and unseen documents
- if classifier is well tuned, classification is highly effective
Decision Trees

Training set used to build **classification rules**

- organized as paths in a tree
- tree paths used to classify documents outside training set
- rules, amenable to human interpretation, facilitate interpretation of results
Consider the small relational database below

<table>
<thead>
<tr>
<th>Id</th>
<th>Play</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
</tr>
<tr>
<td>5</td>
<td>yes</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
</tr>
<tr>
<td>6</td>
<td>yes</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
</tr>
<tr>
<td>8</td>
<td>yes</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
</tr>
<tr>
<td>9</td>
<td>yes</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
</tr>
<tr>
<td>10</td>
<td>no</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>true</td>
</tr>
</tbody>
</table>

Test Instance

<table>
<thead>
<tr>
<th>Id</th>
<th>Play</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>?</td>
<td>sunny</td>
<td>cool</td>
<td>high</td>
<td>false</td>
</tr>
</tbody>
</table>

Decision Tree (DT) allows predicting values of a given attribute
Basic Technique

- DT to predict values of attribute Play
 - Given: Outlook, Humidity, Windy

```
         outlook
           /    \\
          |     |
        sunny rainy

         /     /     |
    humidity windy  overcast

          /     /          |
       high  normal  true  false

         /          /        |
     No  Yes  No  Yes  Yes
```

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 39
Basic Technique

- Internal nodes \rightarrow attribute names
- Edges \rightarrow attribute values
- Traversal of DT \rightarrow value for attribute “Play”.

$$ (Outlook = sunny) \land (Humidity = high) \rightarrow (Play = no) $$

<table>
<thead>
<tr>
<th>Id</th>
<th>Play</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>?</td>
<td>sunny</td>
<td>cool</td>
<td>high</td>
<td>false</td>
</tr>
</tbody>
</table>
Basic Technique

- Predictions based on seen instances
- New instance that violates seen patterns will lead to erroneous prediction
- Example database works as training set for building the decision tree
The Splitting Process

- DT for a database can be built using recursive splitting strategy

Goal: build DT for attribute Play

- select one of the attributes, other than Play, as root
- use attribute values to split tuples into subsets
- for each subset of tuples, select a second splitting attribute
- repeat
The Splitting Process

Step by step splitting process
The Splitting Process

- Strongly affected by order of split attributes
 - depending on order, tree might become unbalanced
- Balanced or near-balanced trees are more efficient for predicting attribute values
- **Rule of thumb**: select attributes that reduce average path length
Classification of Documents

For document classification

- with each internal node associate an index term
- with each leaf associate a document class
- with the edges associate binary predicates that indicate presence/absence of index term
Classification of Documents

- V: a set of nodes
- Tree $T = (V, E, r)$: an acyclic graph on V where
 - $E \subseteq V \times V$ is the set of edges
 - Let $edge(v_i, v_j) \in E$
 - v_i is the father node
 - v_j is the child node
 - $r \in V$ is called the root of T
- I: set of all internal nodes
- \overline{I}: set of all leaf nodes
Classification of Documents

Define

\[K = \{ k_1, k_2, \ldots, k_t \} \]: set of index terms of a doc collection

\[C \]: set of all classes

\[P \]: set of logical predicates on the index terms

\[DT = (V, E; r; l_I, l_L, l_E) \]: a six-tuple where

\[(V; E; r) \]: a tree whose root is \(r \)

\[l_I : I \rightarrow K \]: a function that associates with each internal node of the tree one or more index terms

\[l_L : \overline{I} \rightarrow C \]: a function that associates with each non-internal (leaf) node a class \(c_p \in C \)

\[l_E : E \rightarrow P \]: a function that associates with each edge of the tree a logical predicate from \(P \)
Decision tree model for class c_p can be built using a recursive splitting strategy

- **first step:** associate all documents with the root
- **second step:** select index terms that provide a good separation of the documents
- **third step:** repeat until tree complete
Terms k_a, k_b, k_c, and k_h have been selected for first split
Classification of Documents

To select splitting terms use

- information gain or entropy

Selection of terms with high information gain tends to

- increase number of branches at a given level, and
- reduce number of documents in each resultant subset
- yield smaller and less complex decision trees
Classification of Documents

Problem: missing or unknown values

- appear when document to be classified does not contain some terms used to build the DT
- not clear which branch of the tree should be traversed

Solution:

- delay construction of tree until new document is presented for classification
- build tree based on features presented in this document, avoiding the problem
The kNN Classifier
The kNN Classifier

kNN (k-nearest neighbor): **on-demand** or **lazy classifier**

- lazy classifiers do not build a classification model a priori
- classification done when new document d_j is presented
- based on the classes of the k nearest neighbors of d_j
 - determine the k nearest neighbors of d_j in a training set
 - use the classes of these neighbors to determine a class for d_j
The k-NN Classifier

An example of a 4-NN classification process
Classification of Documents

- kNN: to each document-class pair $[d_j, c_p]$ assign a score

$$S_{d_j, c_p} = \sum_{d_t \in N_k(d_j)} \text{similarity}(d_j, d_t) \times T(d_t, c_p)$$

where

- $N_k(d_j)$: set of the k nearest neighbors of d_j in training set
- $\text{similarity}(d_j, d_t)$: cosine formula of Vector model (for instance)
- $T(d_t, c_p)$: training set function returns
 - 1, if d_t belongs to class c_p
 - 0, otherwise

Classifier assigns to d_j class(es) c_p with highest score(s)
Problem with kNN: performance

- classifier has to compute distances between document to be classified and all training documents
- another issue is how to choose the “best” value for k
The Rocchio Classifier
The Rocchio Classifier

- Rocchio relevance feedback
 - modifies user query based on user feedback
 - produces new query that better approximates the interest of the user
 - can be adapted to text classification

Interpret training set as feedback information
- terms that belong to training docs of a given class c_p are said to provide positive feedback
- terms that belong to training docs outside class c_p are said to provide negative feedback

Feedback information summarized by a centroid vector
- New document classified by distance to centroid
Basic Technique

Each document d_j represented as a weighted term vector \vec{d}_j

$$\vec{d}_j = (w_{1,j}, w_{2,j}, \ldots, w_{t,j})$$

- $w_{i,j}$: weight of term k_i in document d_j
- t: size of the vocabulary
Rochio classifier for a class c_p is computed as a centroid given by

$$
\vec{c}_p = \frac{\beta}{n_p} \sum_{d_j \in c_p} \vec{d}_j - \frac{\gamma}{N_t - n_p} \sum_{d_l \not\in c_p} \vec{d}_l
$$

where

- n_p: number of documents in class c_p
- N_t: total number of documents in the training set
- terms of training docs in class c_p: positive weights
- terms of docs outside class c_p: negative weights
Classification of Documents

- plus signs: terms of training docs in class c_p
- minus signs: terms of training docs outside class c_p

Classifier assigns to each document-class $[d_j, c_p]$ a score

$$S(d_j, c_p) = |\vec{c}_p - \vec{d}_j|$$

Classes with highest scores are assigned to d_j
For specific domains, negative feedback might move the centroid away from the topic of interest.

Distant negative feedback documents might shift the centroid away from the positive terms.
To reduce this effect, decrease number of negative feedback docs

- use only **most positive** docs among all docs that provide negative feedback
- these are usually referred to as **near-positive documents**

Near-positive documents are selected as follows

- \vec{c}_{p^+}: centroid of the training documents that belong to class c_p
- training docs outside c_p: measure their distances to \vec{c}_{p^+}
- smaller distances to centroid: near-positive documents

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 63
The Probabilistic Naive Bayes Classifier
Naive Bayes

Probabilistic classifiers

assign to each document-class pair $[d_j, c_p]$ a probability $P(c_p|\vec{d}_j)$

$$P(c_p|\vec{d}_j) = \frac{P(c_p) \times P(\vec{d}_j|c_p)}{P(\vec{d}_j)}$$

- $P(\vec{d}_j)$: probability that randomly selected doc is \vec{d}_j
- $P(c_p)$: probability that randomly selected doc is in class c_p

assign to new and unseen docs classes with highest probability estimates
Naive Bayes Classifier

For efficiency, simplify computation of \(P(\mathbf{d}_j|c_p) \)

- most common simplification: independence of index terms
- classifiers are called **Naive Bayes classifiers**

Many variants of Naive Bayes classifiers

- best known is based on the classic probabilistic model
- doc \(d_j \) represented by vector of binary weights

\[
\mathbf{d}_j = (w_{1,j}, w_{2,j}, \ldots, w_{t,j})
\]

\[
w_{i,j} = \begin{cases}
1 & \text{if term } k_i \text{ occurs in document } d_j \\
0 & \text{otherwise}
\end{cases}
\]

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 66
To each pair $[d_j, c_p]$, the classifier assigns a score

$$S(d_j, c_p) = \frac{P(c_p|d_j)}{P(\overline{c_p}|d_j)}$$

- $P(c_p|d_j)$: probability that document d_j belongs to class c_p
- $P(\overline{c_p}|d_j)$: probability that document d_j does not belong to c_p
- $P(c_p|d_j) + P(\overline{c_p}|d_j) = 1$
Naive Bayes Classifier

Applying Bayes, we obtain

$$S(d_j, c_p) \sim \frac{P(\vec{d}_j | c_p)}{P(\vec{d}_j | \overline{c}_p)}$$

Independence assumption

$$P(\vec{d}_j | c_p) = \prod_{k_i \in \vec{d}_j} P(k_i | c_p) \times \prod_{k_i \notin \vec{d}_j} P(k_i | c_p)$$

$$P(\vec{d}_j | \overline{c}_p) = \prod_{k_i \in \vec{d}_j} P(k_i | \overline{c}_p) \times \prod_{k_i \notin \vec{d}_j} P(k_i | \overline{c}_p)$$
Naive Bayes Classifier

Equation for the score $S(d_j, c_p)$

$$S(d_j, c_p) \sim \sum_{k_i} w_{i,j} \left(\log \frac{p_{iP}}{1 - p_{iP}} + \log \frac{1 - q_{iP}}{q_{iP}} \right)$$

$p_{iP} = P(k_i | c_p)$

$q_{iP} = P(k_i | \overline{c_p})$

p_{iP}: probability that k_i belongs to doc randomly selected from c_p

q_{iP}: probability that k_i belongs to doc randomly selected from outside c_p
Estimate p_{iP} and q_{iP} from set D_t of training docs

$$p_{iP} = \frac{1 + \sum_{d_j \in D_t \wedge k_i \in d_j} P(c_p | d_j)}{2 + \sum_{d_j \in D_t} P(c_p | d_j)} = \frac{1 + n_{i,p}}{2 + n_p}$$

$$q_{iP} = \frac{1 + \sum_{d_j \in D_t \wedge \overline{k_i} \in d_j} P(\overline{c}_p | d_j)}{2 + \sum_{d_j \in D_t} P(\overline{c}_p | d_j)} = \frac{1 + (n_i - n_{i,p})}{2 + (N_t - n_p)}$$

- $n_{i,p}$, n_i, n_p, N_t: see probabilistic model
- $P(c_p | d_j) \in \{0, 1\}$ and $P(\overline{c}_p | d_j) \in \{0, 1\}$: given by training set

Binary Independence Naive Bayes classifier

- assigns to each doc d_j classes with higher $S(d_j, c_p)$ scores
Multinomial Naive Bayes Classifier

- Naive Bayes classifier: term weights are binary
- Variant: consider term frequency inside docs
- To classify doc d_j in class c_p

$$P(c_p|d_j) = \frac{P(c_p) \times P(d_j|c_p)}{P(d_j)}$$

- $P(d_j)$: prior document probability
- $P(c_p)$: prior class probability

$$P(c_p) = \frac{\sum_{d_j \in D_t} P(c_p|d_j)}{N_t} = \frac{n_p}{N_t}$$

- $P(c_p|d_j) \in \{0, 1\}$: given by training set of size N_t
Multinomial Naive Bayes Classifier

Prior document probability given by

\[
P(\vec{d}_j) = \sum_{p=1}^{L} P_{\text{prior}}(\vec{d}_j|c_p) \times P(c_p)
\]

where

\[
P_{\text{prior}}(\vec{d}_j|c_p) = \prod_{k_i \in \vec{d}_j} P(k_i|c_p) \times \prod_{k_i \not\in \vec{d}_j} [1 - P(k_i|c_p)]
\]

\[
P(k_i|c_p) = \frac{1 + \sum_{d_j \in D_t \land k_i \in d_j} P(c_p|d_j)}{2 + \sum_{d_j \in D_t} P(c_p|d_j)} = \frac{1 + n_{i,p}}{2 + n_p}
\]
These equations do not consider term frequencies. To include term frequencies, modify $P(d_j|c_p)$:

- Consider that terms of doc $d_j \in c_p$ are drawn from a known distribution.
- Each single term draw a Bernoulli trial with probability of success given by $P(k_i|c_p)$.
- Each term k_i is drawn as many times as its doc frequency $f_{i,j}$.
Multinomial Naive Bayes Classifier

Multinomial probabilistic term distribution

\[
P(\vec{d}_j | c_p) = F_j! \times \prod_{k_i \in d_j} \frac{[P(k_i | c_p)]^{f_{i,j}}}{f_{i,j}!}
\]

\[
F_j = \sum_{k_i \in d_j} f_{i,j}
\]

- \(F_j\): a measure of document length

Term probabilities estimated from training set \(\mathcal{D}_t\)

\[
P(k_i | c_p) = \frac{\sum_{d_j \in \mathcal{D}_t} f_{i,j} P(c_p | d_j)}{\sum_{\forall k_i} \sum_{d_j \in \mathcal{D}_t} f_{i,j} P(c_p | d_j)}
\]
The SVM Classifier
Support Vector Machines (SVMs)

- a vector space method for binary classification problems
- documents represented in t-dimensional space
- find a **decision surface (hyperplane)** that best separate documents of two classes
- new document classified by its position relative to hyperplane
SVM Basic Technique – Intuition

Simple 2D example: training documents linearly separable

support vector

support vectors

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 77
SVM Basic Technique – Intuition

- **Line** \(s \)—The Decision Hyperplane
 - maximizes distances to closest docs of each class
 - it is the best separating hyperplane

- **Delimiting Hyperplanes**
 - parallel dashed lines that delimit region where to look for a solution
SVM Basic Technique – Intuition

Lines that cross the delimiting hyperplanes
- candidates to be selected as the decision hyperplane
- lines that are parallel to delimiting hyperplanes: best candidates

Support vectors:
documents that belong to, and define, the delimiting hyperplanes
SVM Basic Technique – Intuition

Our example in a 2-dimensional system of coordinates
SVM Basic Technique – Intuition

Let,

- \(H_w \): a hyperplane that separates docs in classes \(c_a \) and \(c_b \)
- \(m_a \): distance of \(H_w \) to the closest document in class \(c_a \)
- \(m_b \): distance of \(H_w \) to the closest document in class \(c_b \)
- \(m_a + m_b \): margin \(m \) of the SVM

The decision hyperplane maximizes the margin \(m \)
SVM Basic Technique – Intuition

Hyperplane \(r : x - 4 = 0 \) separates docs in two sets
- its distances to closest docs in either class is 1
- thus, its margin \(m \) is 2

Hyperplane \(s : y + x - 7 = 0 \)
- has margin equal to \(3\sqrt{2} \)
- maximum for this case
- \(s \) is the decision hyperplane
Let \mathbb{R}^n refer to an n-dimensional space with origin O.

Generic point Z is represented as

$$\vec{z} = (z_1, z_2, \ldots, z_n)$$

z_i, $1 \leq i \leq n$, are real variables.

Similar notation to refer to specific fixed points such as A, B, H, P, and Q.
Lines and Hyperplanes in the \mathbb{R}^n

- Line s in the direction of a vector \vec{w} that contains a given point P

- Parametric equation for this line

$$s : \vec{z} = t\vec{w} + \vec{p}$$

where $-\infty < t < +\infty$
Lines and Hyperplanes in the \mathbb{R}^n

- Hyperplane \mathcal{H}_w that contains a point H and is perpendicular to a given vector \vec{w}

- Its normal equation is

$$\mathcal{H}_w : (\vec{z} - \vec{h})\vec{w} = 0$$

- Can be rewritten as

$$\mathcal{H}_w : \vec{z}\vec{w} + k = 0$$

where \vec{w} and $k = -\vec{h}\vec{w}$ need to be determined
Lines and Hyperplanes in the \mathbb{R}^n

- P: projection of point A on hyperplane \mathcal{H}_w
- \overrightarrow{AP}: distance of point A to hyperplane \mathcal{H}_w
- Parametric equation of line determined by A and P

$$line(\overrightarrow{AP}): \vec{z} = t\vec{w} + \vec{a}$$

where $-\infty < t < +\infty$
Lines and Hyperplanes in the \mathbb{R}^n

- For point P specifically

$$\vec{p} = t_p \vec{w} + \vec{a}$$

where t_p is value of t for point P

- Since $P \in \mathcal{H}_w$

$$(t_p \vec{w} + \vec{a})\vec{w} + k = 0$$

- Solving for t_p,

$$t_p = -\frac{\vec{a}\vec{w} + k}{|\vec{w}|^2}$$

where $|\vec{w}|$ is the vector norm
Substitute t_p into Equation of point P

$$\vec{a} - \vec{p} = \frac{\vec{a} \vec{w} + k}{|\vec{w}|} \times \frac{\vec{w}}{|\vec{w}|}$$

Since $\vec{w}/|\vec{w}|$ is a unit vector

$$\overrightarrow{AP} = |\vec{a} - \vec{p}| = \frac{\vec{a} \vec{w} + k}{|\vec{w}|}$$
How signs vary with regard to a hyperplane \mathcal{H}_w

- region above \mathcal{H}_w: points \vec{z} that make $\vec{z}\vec{w} + k$ positive
- region below \mathcal{H}_w: points \vec{z} that make $\vec{z}\vec{w} + k$ negative
The SVM optimization problem: given support vectors such as \vec{a} and \vec{b}, find hyperplane \mathcal{H}_w that maximizes margin m.
SVM Technique – Formalization

- **O:** origin of the coordinate system
- **point A:** a doc from class c_a (belongs to delimiting hyperplane H_a)
- **point B:** a doc from class c_l

- H_w is determined by a point H (represented by \vec{h}) and by a perpendicular vector \vec{w}
- neither \vec{h} nor \vec{w} are known a priori
SVM Technique – Formalization

- P: projection of point A on hyperplane \mathcal{H}_w
- \overrightarrow{AP}: distance of point A to hyperplane \mathcal{H}_w

\[
\overrightarrow{AP} = \frac{\vec{a}\vec{w} + k}{|\vec{w}|}
\]

- \overrightarrow{BQ}: distance of point B to hyperplane \mathcal{H}_w

\[
\overrightarrow{BQ} = -\frac{\vec{b}\vec{w} + k}{|\vec{w}|}
\]
SVM Technique – Formalization

- Margin m of the SVM

$$m = \overline{AP} + \overline{BQ}$$

is independent of size of \vec{w}

- Vectors \vec{w} of varying sizes maximize m

- Impose restrictions on $|\vec{w}|$

$$\vec{a} \cdot \vec{w} + k = 1$$
$$\vec{b} \cdot \vec{w} + k = -1$$

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 93
SVM Technique – Formalization

- Restrict solution to hyperplanes that split margin m in the middle
- Under these conditions,

\[
m = \frac{1}{|\vec{w}|} + \frac{1}{|\vec{w}'|} = \frac{2}{|\vec{w}|}
\]
SVM Technique – Formalization

Let,

- \(T = \{ \ldots , [c_j, \vec{z}_j], [c_{j+1}, \vec{z}_{j+1}], \ldots \} \): the training set
- \(c_j \): class associated with point \(\vec{z}_j \) representing doc \(d_j \)

Then,

SVM Optimization Problem:

\[
\text{maximize } m = \frac{2}{|\vec{w}|}
\]

subject to

\[
\begin{align*}
\vec{w} \cdot \vec{z}_j + b & \geq +1 \text{ if } c_j = c_a \\
\vec{w} \cdot \vec{z}_j + b & \leq -1 \text{ if } c_j = c_b
\end{align*}
\]

Support vectors: vectors that make equation equal to either +1 or -1
SVM Technique – Formalization

Let us consider again our simple example case

Optimization problem:

maximize \(m = \frac{2}{|\vec{w}|} \)
subject to

\[\vec{w} \cdot (5, 5) + b = +1 \]
\[\vec{w} \cdot (1, 3) + b = -1 \]
SVM Technique – Formalization

- If we represent vector \vec{w} as (x, y) then $|\vec{w}| = \sqrt{x^2 + y^2}$
- $m = 3\sqrt{2}$: distance between delimiting hyperplanes
- Thus,

\[
3\sqrt{2} = \frac{2}{\sqrt{x^2 + y^2}}
\]
\[
5x + 5y + b = +1
\]
\[
x + 3y + b = -1
\]
Maximum of $2/|\vec{w}|$:

- $b = -21/9$
- $x = 1/3, y = 1/3$
- equation of decision hyperplane

$$(1/3, 1/3) \cdot (x, y) + (-21/9) = 0$$

or

$$y + x - 7 = 0$$
Classification of Documents

Classification of doc d_j (i.e., \tilde{z}_j) decided by

$$f(\tilde{z}_j) = \text{sign}(\mathbf{w}^T \tilde{z}_j + b)$$

- $f(\tilde{z}_j) = " + ": d_j$ belongs to class c_a
- $f(\tilde{z}_j) = " - ": d_j$ belongs to class c_b

SVM classifier might enforce margin to reduce errors

- a new document d_j is classified
 - in class c_a: only if $\mathbf{w}^T \tilde{z}_j + b > 1$
 - in class c_b: only if $\mathbf{w}^T \tilde{z}_j + b < -1$
SVM with Multiple Classes

- SVMs can only take binary decisions
 - a document belongs or not to a given class

- With multiple classes
 - reduce the multi-class problem to binary classification
 - natural way: one binary classification problem per class

- To classify a new document d_j
 - run classification for each class
 - each class c_p paired against all others
 - classes of d_j: those with largest margins
Another solution

- consider binary classifier for each pair of classes c_p and c_q
- all training documents of one class: positive examples
- all documents from the other class: negative examples
Non-Linearly Separable Cases

- SVM has no solutions when there is no hyperplane that separates the data points into two disjoint sets

 - This condition is known as **non-linearly separable case**

- In this case, two viable solutions are

 - **soft margin approach**: allow classifier to make few mistakes
 - **kernel approach**: map original data into higher dimensional space (where mapped data is linearly separable)
Soft Margin Approach

- Allow classifier to make a few mistakes

maximize \(m = \frac{2}{|w|} + \gamma \sum_j e_j \)
subject to
\[
\begin{align*}
\vec{w} \vec{z}_j + k & \geq +1 - e_j, & \text{if } c_j = c_a \\
\vec{w} \vec{z}_j + k & \leq -1 + e_j, & \text{if } c_j = c_b \\
\forall j, & \quad e_j & \geq 0
\end{align*}
\]

- Optimization is now trade-off between
 - margin width
 - amount of error
 - parameter \(\gamma \) balances importance of these two factors
Kernel Approach

Compute max margin in transformed feature space

\[\begin{align*}
\text{minimize} & \quad m = \frac{1}{2} \| \vec{w} \|^2 \\
\text{subject to} & \quad f(\vec{w}, \vec{z}_j) + k \geq +1, \quad \text{if } c_j = c_a \\
& \quad f(\vec{w}, \vec{z}_j) + k \leq -1, \quad \text{if } c_j = c_b
\end{align*} \]

Conventional SVM case

\[f(\vec{w}, \vec{z}_j) = \vec{w} \vec{z}_j, \text{ the kernel, is dot product of input vectors} \]

Transformed SVM case

the kernel is a modified map function

- polynomial kernel: \[f(\vec{w}, \vec{x}_j) = (\vec{w} \vec{x}_j + 1)^d \]
- radial basis function: \[f(\vec{w}, \vec{x}_j) = \exp(\lambda \| \vec{w} \vec{x}_j \|^2), \lambda > 0 \]
- sigmoid: \[f(\vec{w}, \vec{x}_j) = \tanh(\rho (\vec{w} \vec{x}_j) + c), \text{ for } \rho > 0 \text{ and } c < 0 \]
Ensemble Classifiers
Ensemble Classifiers

- Combine predictions of distinct classifiers to generate a new predictive score
- Ideally, results of higher precision than those yielded by constituent classifiers
- Two ensemble classification methods:
 - stacking
 - boosting
Stacking-based Ensemble

[Diagram showing a process involving training documents, feature vectors, SVM, Naive Bayes, kNN, and a meta classifier.]
Stacking-based Classifiers

Stacking method: learn function that combines predictions of individual classifiers

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 108
Stacking-based Classifiers

With each document-class pair \([d_j, c_p]\) in training set associate predictions made by distinct classifiers

Instead of predicting class of document \(d_j\)

- predict the classifier that best predicts the class of \(d_j\), or
- combine predictions of base classifiers to produce better results

Advantage: errors of a base classifier can be counter-balanced by hits of others
Boosting-based Classifiers

- **Boosting**: classifiers to be combined are generated by several iterations of a **same learning technique**

- **Focus**: misclassified training documents

- **At each interaction**
 - Each document in training set is given a weight
 - Weights of incorrectly classified documents are increased at each round

- **After n rounds**
 - Outputs of trained classifiers are combined in a weighted sum
 - Weights are the error estimates of each classifier
Boosting-based Classifiers

- Variation of AdaBoost algorithm (Yoav Freund et al)

AdaBoost

let $T : D_t \times C$ be the training set function;
let N_t be the training set size and M be the number of iterations;
initialize the weight w_j of each document d_j as $w_j = \frac{1}{N_t}$;

for $k = 1$ to M {

learn the classifier function F_k from the training set;
estimate weighted error: $err_k = \sum_{d_j|d_j\text{misclassified}} w_j / \sum_{i=1}^{N_t} w_j$;
compute a classifier weight: $\alpha_k = \frac{1}{2} \times \log \left(\frac{1-err_k}{err_k} \right)$;
for all correctly classified examples e_j: $w_j \leftarrow w_j \times e^{-\alpha_k}$;
for all incorrectly classified examples e_j: $w_j \leftarrow w_j \times e^{\alpha_k}$;
normalize the weights w_j so that they sum up to 1;
}

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 111
Feature Selection or Dimensionality Reduction
Feature Selection

- Large feature space
 - might render document classifiers impractical

- Classic solution
 - select a subset of all features to represent the documents
 - called **feature selection**
 - reduces dimensionality of the documents representation
 - reduces **overfitting**
Term-Class Incidence Table

Feature selection

- dependent on statistics on term occurrences inside docs and classes

Let

- \(\mathcal{D}_t \): subset composed of all training documents
- \(N_t \): number of documents in \(\mathcal{D}_t \)
- \(t_i \): number of documents from \(\mathcal{D}_t \) that contain term \(k_i \)
- \(\mathcal{C} = \{c_1, c_2, \ldots, c_L\} \): set of all \(L \) classes
- \(\mathcal{T} : \mathcal{D}_t \times \mathcal{C} \rightarrow [0, 1] \): a training set function
Term-Class Incidence Table

<table>
<thead>
<tr>
<th>Case</th>
<th>Docs in c_p</th>
<th>Docs not in c_p</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docs that contain k_i</td>
<td>$n_{i,p}$</td>
<td>$n_i - n_{i,p}$</td>
<td>n_i</td>
</tr>
<tr>
<td>Docs that do not contain k_i</td>
<td>$n_p - n_{i,p}$</td>
<td>$N_t - n_i - (n_p - n_{i,p})$</td>
<td>$N_t - n_i$</td>
</tr>
<tr>
<td>All docs</td>
<td>n_p</td>
<td>$N_t - n_p$</td>
<td>N_t</td>
</tr>
</tbody>
</table>

- $n_{i,p}$: # docs that contain k_i and are classified in c_p
- $n_i - n_{i,p}$: # docs that contain k_i but are not in class c_p
- n_p: total number of training docs in class c_p
- $n_p - n_{i,p}$: number of docs from c_p that do not contain k_i
Given term-class incidence table above, define

- Probability that \(k_i \in d_j \): \(P(k_i) = \frac{n_i}{N_t} \)
- Probability that \(k_i \notin d_j \): \(P(\overline{k_i}) = \frac{N_t-n_i}{N_t} \)
- Probability that \(d_j \in c_p \): \(P(c_p) = \frac{n_p}{N_t} \)
- Probability that \(d_j \notin c_p \): \(P(\overline{c_p}) = \frac{N_t-n_p}{N_t} \)
- Probability that \(k_i \in d_j \) and \(d_j \in c_p \): \(P(k_i, c_p) = \frac{n_i.p}{N_t} \)
- Probability that \(k_i \notin d_j \) and \(d_j \in c_p \): \(P(\overline{k_i}, c_p) = \frac{n_p-n_i.p}{N_t} \)
- Probability that \(k_i \in d_j \) and \(d_j \notin c_p \): \(P(k_i, \overline{c_p}) = \frac{n_i-n_i.p}{N_t} \)
- Probability that \(k_i \notin d_j \) and \(d_j \notin c_p \): \(P(\overline{k_i}, \overline{c_p}) = \frac{N_t-n_i-(n_p-n_i.p)}{N_t} \)
Feature Selection by Doc Frequency

Let K_{th} be a threshold on term document frequencies

Feature Selection by Term Document Frequency

- retain all terms k_i for which $n_i \geq K_{th}$
- discard all others
- recompute doc representations to consider only terms retained

Even if simple, method allows reducing dimensionality of space with basically no loss in effectiveness
Feature Selection by Tf-Idf Weights

- $w_{i,j}$: tf-idf weight associated with pair $[k_i, d_j]$
- K_{th}: threshold on tf-idf weights

Feature Selection by TF-IDF Weights

- retain all terms k_i for which $w_{i,j} \geq K_{th}$
- discard all others
- recompute doc representations to consider only terms retained

Experiments suggest that this feature selection allows reducing dimensionality of space by a factor of 10 with no loss in effectiveness
Feature Selection by Mutual Information

Mutual information
- relative entropy between distributions of two random variables

If variables are independent, mutual information is zero
- knowledge of one of the variables does not allow inferring anything about the other variable

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 119
Mutual Information

1. Mutual information across all classes

\[I(k_i, c_p) = \log \frac{P(k_i, c_p)}{P(k_i)P(c_p)} = \log \frac{n_{i,p}}{N_t} \times \frac{n_p}{N_t} \]

2. That is,

\[MI(k_i, C) = \sum_{p=1}^{L} P(c_p) I(k_i, c_p) \]

\[= \sum_{p=1}^{L} \frac{n_p}{N_t} \log \frac{n_{i,p}}{N_t} \times \frac{n_p}{N_t} \]
Mutual Information

Alternative: maximum term information over all classes

$$I_{max}(k_i, C) = \max_{p=1}^{L} I(k_i, c_p)$$

$$= \max_{p=1}^{L} \log \frac{n_{i,p}}{\frac{N_i}{N_t}} \times \frac{n_p}{\frac{N_t}{N_t}}$$

K_{th}: threshold on entropy

Feature Selection by Entropy

- retain all terms k_i for which $MI(k_i, C) \geq K_{th}$
- discard all others
- recompute doc representations to consider only terms retained
Feature Selection: Information Gain

Mutual information uses probabilities associated with the occurrence of terms in documents

Information Gain

- complementary metric
- considers probabilities associated with absence of terms in docs
- balances the effects of term/document occurrences with the effects of term/document absences
Information Gain

Information gain of term k_i over set C of all classes

\[IG(k_i, C) = H(C) - H(C|k_i) - H(C|\neg k_i) \]

- $H(C)$: entropy of set of classes C
- $H(C|k_i)$: conditional entropies of C in the presence of term k_i
- $H(C|\neg k_i)$: conditional entropies of C in the absence of term k_i
- $IG(k_i, C)$: amount of knowledge gained about C due to the fact that k_i is known
Information Gain

Recalling the expression for entropy, we can write

\[IG(k_i, C) = - \sum_{p=1}^{L} P(c_p) \log P(c_p) \]

\[- \left(- \sum_{p=1}^{L} P(k_i, c_p) \log P(c_p | k_i) \right) \]

\[- \left(- \sum_{p=1}^{L} P(\overline{k}_i, c_p) \log P(c_p | \overline{k}_i) \right) \]
Information Gain

Applying Bayes rule

\[IG(k_i, C) = - \sum_{p=1}^{L} \left(P(c_p) \log P(c_p) - P(k_i, c_p) \log \frac{P(k_i, c_p)}{P(k_i)} \right) \]

Substituting previous probability definitions

\[IG(k_i, C) = - \sum_{p=1}^{L} \left[\frac{n_p}{N_t} \log \left(\frac{n_p}{N_t} \right) - \frac{n_{i,p}}{N_t} \log \frac{n_{i,p}}{n_i} - \frac{n_p - n_{i,p}}{N_t} \log \frac{n_p - n_{i,p}}{N_t - n_i} \right] \]
Information Gain

\(K_{th}\): threshold on information gain

Feature Selection by Information Gain

- retain all terms \(k_i\) for which \(IG(k_i, C) \geq K_{th}\)
- discard all others
- recompute doc representations to consider only terms retained
Feature Selection using Chi Square

Statistical metric defined as

\[\chi^2(k_i, c_p) = \frac{N_t (P(k_i, c_p) P(\neg k_i, \neg c_p) - P(k_i, \neg c_p) P(\neg k_i, c_p))^2}{P(k_i) P(\neg k_i) P(c_p) P(\neg c_p)} \]

quantifies lack of independence between \(k_i \) and \(c_p \)

Using probabilities previously defined

\[\chi^2(k_i, c_p) = \frac{N_t (n_{i,p} (N_t - n_i - n_p + n_{i,p}) - (n_i - n_{i,p}) (n_p - n_{i,p}))^2}{n_p (N_t - n_p) n_i (N_t - n_i)} \]

\[= \frac{N_t (N_t n_{i,p} - n_p n_i)^2}{n_p n_i (N_t - n_p) (N_t - n_i)} \]
Chi Square

- Compute either average or max chi square

\[
\chi^2_{avg}(k_i) = \sum_{p=1}^{L} P(c_p) \chi^2(k_i, c_p)
\]

\[
\chi^2_{max}(k_i) = \max_{p=1}^{L} \chi^2(k_i, c_p)
\]

- \(K_{th}\): threshold on chi square

Feature Selection by Chi Square

- retain all terms \(k_i\) for which \(\chi^2_{avg}(k_i) \geq K_{th}\)
- discard all others
- recompute doc representations to consider only terms retained
Evaluation Metrics
Evaluation Metrics

Evaluation

- important for any text classification method
- key step to validate a newly proposed classification method
Contingency Table

Let

- \mathcal{D}: collection of documents
- \mathcal{D}_t: subset composed of training documents
- N_t: number of documents in \mathcal{D}_t
- $\mathcal{C} = \{c_1, c_2, \ldots, c_L\}$: set of all L classes

Further let

- $\mathcal{T}: \mathcal{D}_t \times \mathcal{C} \to [0, 1]$: training set function
- n_t: number of docs from training set \mathcal{D}_t in class c_p
- $\mathcal{F}: \mathcal{D} \times \mathcal{C} \to [0, 1]$: text classifier function
- n_f: number of docs from training set assigned to class c_p by the classifier
Apply classifier to all documents in training set

Contingency table is given by

<table>
<thead>
<tr>
<th>Case</th>
<th>$T(d_j, c_p) = 1$</th>
<th>$T(d_j, c_p) = 0$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(d_j, c_p) = 1$</td>
<td>$n_{f,t}$</td>
<td>$n_f - n_{f,t}$</td>
<td>n_f</td>
</tr>
<tr>
<td>$F(d_j, c_p) = 0$</td>
<td>$n_t - n_{f,t}$</td>
<td>$N_t - n_f - n_t + n_{f,t}$</td>
<td>$N_t - n_f$</td>
</tr>
<tr>
<td>All docs</td>
<td>n_t</td>
<td>$N_t - n_t$</td>
<td>N_t</td>
</tr>
</tbody>
</table>

$n_{f,t}$: number of docs that both the training and classifier functions assigned to class c_p

$n_t - n_{f,t}$: number of training docs in class c_p that were miss-classified

The remaining quantities are calculated analogously
Accuracy and Error

Accuracy and error metrics, relative to a given class c_p

\[
Acc(c_p) = \frac{n_{f,t} + (N_t - n_f - n_t + n_{f,t})}{N_t}
\]

\[
Err(c_p) = \frac{(n_f - n_{f,t}) + (n_t - n_{f,t})}{N_t}
\]

\[
Acc(c_p) + Err(c_p) = 1
\]

These metrics are commonly used for evaluating classifiers.
Accuracy and Error

Accuracy and error have disadvantages

consider classification with only two categories c_p and c_r

assume that out of 1,000 docs, 20 are in class c_p

a classifier that assumes all docs not in class c_p

- accuracy = 98%
- error = 2%

which erroneously suggests a very good classifier
Consider now a second classifier that correctly predicts 50% of the documents in c_p

<table>
<thead>
<tr>
<th></th>
<th>$T(d_j, c_p) = 1$</th>
<th>$T(d_j, c_p) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{F}(d_j, c_p) = 1$</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{F}(d_j, c_p) = 0$</td>
<td>10</td>
<td>980</td>
</tr>
<tr>
<td>all docs</td>
<td>20</td>
<td>980</td>
</tr>
</tbody>
</table>

In this case, accuracy and error are given by

$$\text{Acc}(c_p) = \frac{10 + 980}{1,000} = 99\%$$

$$\text{Err}(c_p) = \frac{10 + 0}{1,000} = 1\%$$
This classifier is much better than one that guesses that all documents are not in class c_p.

However, its accuracy is just 1% better, it increased from 98% to 99%.

This suggests that the two classifiers are almost equivalent, which is not the case.
Precision and Recall

- Variants of precision and recall metrics in IR
- Precision P and recall R relative to a class c_p

\[
P(c_p) = \frac{n_{f,t}}{n_f} \quad R(c_p) = \frac{n_{f,t}}{n_t}
\]

- Precision is the fraction of all docs assigned to class c_p by the classifier that really belong to class c_p
- Recall is the fraction of all docs that belong to class c_p that were correctly assigned to class c_p
Consider again the classifier illustrated below

<table>
<thead>
<tr>
<th></th>
<th>$T(d_j, c_p) = 1$</th>
<th>$T(d_j, c_p) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(d_j, c_p) = 1$</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$F(d_j, c_p) = 0$</td>
<td>10</td>
<td>980</td>
</tr>
<tr>
<td>all docs</td>
<td>20</td>
<td>980</td>
</tr>
</tbody>
</table>

Precision and recall figures are given by

$$P(c_p) = \frac{10}{10} = 100\%$$

$$R(c_p) = \frac{10}{20} = 50\%$$
Precision and Recall

- Precision and recall
 - computed for every category in set C
 - great number of values
 - makes tasks of comparing and evaluating algorithms more difficult
- Often convenient to combine precision and recall into a single quality measure
 - one of the most commonly used such metric: F-measure
F-measure is defined as

\[F_\alpha(c_p) = \frac{(\alpha^2 + 1)P(c_p)R(c_p)}{\alpha^2 P(c_p) + R(c_p)} \]

- \(\alpha\): relative importance of precision and recall
- when \(\alpha = 0\), only precision is considered
- when \(\alpha = \infty\), only recall is considered
- when \(\alpha = 0.5\), recall is half as important as precision
- when \(\alpha = 1\), common metric called \(F_1\)-measure

\[F_1(c_p) = \frac{2P(c_p)R(c_p)}{P(c_p) + R(c_p)} \]
F-measure

Consider again the classifier illustrated below

<table>
<thead>
<tr>
<th></th>
<th>$T(d_j, c_p) = 1$</th>
<th>$T(d_j, c_p) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(d_j, c_p) = 1$</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$F(d_j, c_p) = 0$</td>
<td>10</td>
<td>980</td>
</tr>
<tr>
<td>all docs</td>
<td>20</td>
<td>980</td>
</tr>
</tbody>
</table>

For this example, we write

$$F_1(c_p) = \frac{2 \times 1 \times 0.5}{1 + 0.5} \sim 67\%$$
Also common to derive a unique F_1 value

- Average of F_1 across all individual categories

Two main average functions

- Micro-average F_1, or $micF_1$
- Macro-average F_1, or $macF_1$
Macro and Micro Averages

Macro-average F_1 across all categories

$$macF_1 = \frac{\sum_{p=1}^{\mid C \mid} F_1(c_p)}{|C|}$$

Micro-average F_1 across all categories

$$micF_1 = \frac{2PR}{P + R}$$

$$P = \frac{\sum_{c_p \in C} n_{f,t}}{\sum_{c_p \in C} n_f}$$

$$R = \frac{\sum_{c_p \in C} n_{f,t}}{\sum_{c_p \in C} n_t}$$

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 143
In micro-average F_1
- every single document given the same importance

In macro-average F_1
- every single category is given the same importance
- captures the ability of the classifier to perform well for many classes

Whenever distribution of classes is skewed
- both average metrics should be considered
Cross-Validation

Cross-validation

- standard method to guarantee statistical validation of results
- build k different classifiers: $\Psi_1, \Psi_2, \ldots, \Psi_k$
- for this, divide training set D_t into k disjoint sets (folds) of sizes $N_{t1}, N_{t2}, \ldots, N_{tk}$

classifier Ψ_i
- training, or tuning, done on D_t minus the ith fold
- testing done on the ith fold
Cross-Validation

- Each classifier evaluated independently using precision-recall or F_1 figures.
- Cross-validation done by computing average of the k measures.
- Most commonly adopted value of k is 10. The method is called ten-fold cross-validation.
Standard Collections

Reuters-21578

- most widely used reference collection
- constituted of news articles from Reuters for the year 1987
- collection classified under several categories related to economics (e.g., acquisitions, earnings, etc)
- contains 9,603 documents for training and 3,299 for testing, with 90 categories co-occuring in both training and test
- class proportions range from 1.88% to 29.96% in the training set and from 1.7% to 32.95% in the testing set
Standard Collections

Reuters: Volume 1 (RCV1) and Volume 2 (RCV2)

- **RCV1**
 - another collection of news stories released by Reuters
 - contains approximately 800,000 documents
 - documents organized in 103 topical categories
 - expected to substitute previous Reuters-21578 collection

- **RCV2**
 - modified version of original collection, with some corrections
Standard Collections

OHSUMED

- another popular collection for text classification
- subset of Medline, containing medical documents (title or title + abstract)
- 23 classes corresponding to MeSH diseases are used to index the documents
Standard Collections

20 NewsGroups

- third most used collection
- approximately 20,000 messages posted to Usenet newsgroups
- partitioned (nearly) evenly across 20 different newsgroups
- categories are the newsgroups themselves
Standard Collections

Other collections

- WebKB hypertext collection
- ACM-DL
 - a subset of the ACM Digital Library
- samples of Web Directories such as Yahoo and ODP
Organizing the Classes
Taxonomies
Taxonomies

- Labels provide information on semantics of each class
- Lack of organization of classes restricts comprehension and reasoning
- **Hierarchical organization of classes**
 - most appealing to humans
 - hierarchies allow reasoning with more generic concepts
 - also provide for specialization, which allows breaking up a larger set of entities into subsets
Taxonomies

To organize classes hierarchically use
- specialization
- generalization
- sibling relations

Classes organized hierarchically compose a taxonomy
- relations among classes can be used to fine tune the classifier
- taxonomies make more sense when built for a specific domain of knowledge
Taxonomies

- **Hawaii**
 - **Kauai**
 - Princeville Resort
 - Aston Kaha Lani
 - Hanalei Colony Resort
 - Sheraton Kauai Resort
 - Hilton Kauai Beach Hotel
 - **Maui**
 - Sheraton Maui Resort
 - Maui Prince Hotel Makena Resort
 - W Honolulu Diamond Head
 - **Kona Coast Resort**
 - Keauhou Beach Resort
 - Sheraton Keauhou Bay Resort

- **Continental US**
 - **Oahu**
 - The Royal Hawaiian
 - **Virgin Islands**
 - Viceroy Santa Monica Beach Hotel
 - **Other**
Taxonomies

- Taxonomies are built **manually** or **semi-automatically**
- Process of building a taxonomy:

 - Determine: - context - scope
 - Review information needs w/ domain authorities
 - Discover and extract concepts
 - Organize concepts
 - Test and validate

Text Classification, Modern Information Retrieval, Addison Wesley, 2009 – p. 156
Taxonomies

- Manual taxonomies tend to be of superior quality
 - better reflect the information needs of the users

- Automatic construction of taxonomies
 - needs more research and development

- Once a taxonomy has been built
 - documents can be classified according to its concepts
 - can be done manually or automatically
 - automatic classification is advanced enough to work well in practice