Chapter 2

User Interfaces for Search

How People Search
Search Interfaces Today
Visualization in Search Interfaces
Design and Evaluation of Search Interfaces
This chapter focuses on
- the human users of search systems
- the search user interface, i.e., the window through which search systems are seen

The user interface role is to aid in the searchers’ understanding and expression of their information need.

Further, the interface should help users
- formulate their queries
- select among available information sources
- understand search results
- keep track of the progress of their search
How People Search
How People Search

User interaction with search interfaces differs depending on

- the type of task
- the domain expertise of the information seeker
- the amount of time and effort available to invest in the process

Marchionini makes a distinction between information lookup and exploratory search

Information lookup tasks

- are akin to fact retrieval or question answering
- can be satisfied by discrete pieces of information: numbers, dates, names, or Web sites
- can work well for standard Web search interactions
How People Search

Exploratory search is divided into learning and investigating tasks.

Learning search

- requires more than single query-response pairs
- requires the searcher to spend time
 - scanning and reading multiple information items
 - synthesizing content to form new understanding
How People Search

Investigating refers to a longer-term process which

- involves multiple iterations that take place over perhaps very long periods of time
- may return results that are critically assessed before being integrated into personal and professional knowledge bases
- may be concerned with finding a large proportion of the relevant information available
How People Search

Information seeking can be seen as being part of a larger process referred to as *sensemaking*.

Sensemaking is an iterative process of formulating a conceptual representation from a large collection.

Russell et al. observe that most of the effort in sensemaking goes towards the synthesis of a good representation.

Some sensemaking activities interweave search throughout, while others consist of doing a batch of search followed by a batch of analysis and synthesis.
How People Search

Examples of deep analysis tasks that require sensemaking (in addition to search)

- the legal discovery process
- epidemiology (disease tracking)
- studying customer complaints to improve service
- obtaining business intelligence.
Classic × Dynamic Model

Classic notion of the information seeking process:

1. problem identification
2. articulation of information need(s)
3. query formulation
4. results evaluation

More recent models emphasize the dynamic nature of the search process

- The users learn as they search
- Their information needs adjust as they see retrieval results and other document surrogates

This dynamic process is sometimes referred to as the berry picking model of search
The rapid response times of today’s Web search engines allow searchers:
- to look at the results that come back
- to reformulate their query based on these results

This kind of behavior is a commonly-observed strategy within the berry-picking approach

Sometimes it is referred to as **orienteering**

Jansen *et al.* made a analysis of search logs and found that the proportion of users who modified queries is 52%
Some seeking models cast the process in terms of **strategies** and how choices for next steps are made.

- In some cases, these models are meant to reflect conscious planning behavior by expert searchers.
- In others, the models are meant to capture the less planned, potentially more reactive behavior of a typical information seeker.
Navigation: the searcher looks at an information structure and browses among the available information.

This browsing strategy is preferrable when the information structure is well-matched to the user’s information need:

- It is mentally less taxing to recognize a piece of information than it is to recall it.
- It works well only so long as appropriate links are available.

If the links are not available, then the browsing experience might be frustrating.
Spool discusses an example of a user looking for a software driver for a particular laser printer.

Say the user first clicks on *printers*, then *laser printers*, then the following sequence of links:

- HP laser printers
- HP laser printers model 9750
- software for HP laser printers model 9750
- software drivers for HP laser printers model 9750
- software drivers for HP laser printers model 9750 for the Win98 operating system

This kind of interaction is acceptable when each refinement makes sense for the task at hand.
Search Process

Numerous studies have been made of people engaged in the search process.

The results of these studies can help guide the design of search interfaces.

One common observation is that users often reformulate their queries with slight modifications.

Another is that searchers often search for information that they have previously accessed.

The users’ search strategies differ when searching over previously seen materials.

Researchers have developed search interfaces support both query history and revisitation.
Search Process

Studies also show that it is difficult for people to determine whether or not a document is relevant to a topic.

- The less users know about a topic, the poorer judges they are of whether a search result is relevant to that topic.

Other studies found that searchers tend to look at only the top-ranked retrieved results.

- Further, they are biased towards thinking the top one or two results are better than those beneath them.
Studies also show that people are poor at estimating how much of the relevant material they have found. Other studies have assessed the effects of knowledge of the search process itself. These studies have observed that experts use different strategies than novices searchers. For instance, Tabatabai et al. found that expert searchers were more patient than novices. This positive attitude led to better search outcomes.
Search Interfaces Today
Getting Started

How does an information seeking session begin in online information systems?

- The most common way is to use a **Web search engine**
- Another method is to select a Web site from a **personal collection of already-visited sites**
 - which are typically stored in a browser’s bookmark
- Online bookmark systems are popular among a smaller segment of users
 - Ex: [Delicious.com](http://www.delicious.com)
- **Web directories** are also used as a common starting point, but have been largely replaced by search engines
Query Specification

The primary methods for a searcher to express their information need are either:

- entering words into a **search entry** form
- selecting links from a **directory** or other information organization display

For Web search engines, the query is specified in textual form.

Typically, Web queries today are very short consisting of one to three words.
Short queries reflect the standard usage scenario in which the user *tests the waters*:

- If the results do not look relevant, then the user reformulates their query
- If the results are promising, then the user navigates to the most relevant-looking Web site

This search behavior is a demonstration of the *orienteering strategy* of Web search
Query Specification

Before the Web, search systems regularly supported **Boolean operators** and **command-based syntax**. However, these are often difficult for most users to understand.

Jansen *et al* conducted a study over a Web log with 1.5M queries, and found that

- 2.1% of the queries contained Boolean operators
- 7.6% contained other query syntax, primarily double-quotiation marks for phrases

White *et al* examined interaction logs of nearly 600,000 users, and found that

- 1.1% of the queries contained one or more operators
- 8.7% of the users used an operator at any time
Query Specification

Web ranking has gone through three major phases

In the first phase, from approximately 1994–2000:
- Since the Web was much smaller then, complex queries were less likely to yield relevant information
- Further, pages retrieved not necessarily contained all query words

Around 1997, Google moved to conjunctive queries only
- The other Web search engines followed, and conjunctive ranking became the norm
- Google also added term proximity information and page importance scoring (PageRank)
- As the Web grew, longer queries posed as phrases started to produce highly relevant results
The standard interface for a textual query is a search box entry form.

Studies suggest a relationship between query length and the width of the entry form.

Results found that either small forms discourage long queries or wide forms encourage longer queries.
Query Specification Interfaces

- Some entry forms are followed by a form that filters the query in some way.

- For instance, at yelp.com, the user can refine the search by location using a second form.

Notice that the yelp.com form also shows the user’s home location, if it has been specified previously.
Query Specification Interfaces

Some search forms show hints on what kind of information should be entered into each form.

For instance, in zvents.com search, the first box is labeled “what are you looking for”?

The previous example also illustrates specialized input types that some search engines are supporting today.

The zvents.com site recognizes that words like “tomorrow” are time-sensitive.

It also allows flexibility in the syntax of dates.

To illustrate, searching for “comedy on wed” automatically computes the date for the nearest future Wednesday.

This is an example of how the interface can be designed to reflect how people think.
Some interfaces show a list of query suggestions as the user types the query. This is referred to as auto-complete, auto-suggest, or dynamic query suggestions. Anick et al. found that users clicked on dynamic Yahoo suggestions one third of the time.

Often the suggestions shown are those whose prefix matches the characters typed so far. However, in some cases, suggestions are shown that only have interior letters matching. Further, suggestions may be shown that are synonyms of the words typed so far.
Dynamic query suggestions, from Netflix.com
The dynamic query suggestions can be derived from several sources, including:

- The user’s own query history
- A set of metadata that a Web site’s designer considers important
- All of the text contained within a Web site
Dynamic query suggestions, grouped by type, from NextBio.com:
When displaying search results, either
- the documents must be shown in full, or else
- the searcher must be presented with some kind of representation of the content of those documents

The document **surrogate** refers to the information that summarizes the document

- This information is a key part of the success of the search interface
- The design of document surrogates is an active area of research and experimentation
- The quality of the surrogate can greatly effect the perceived relevance of the search results listing
In Web search, the **page title** is usually shown prominently, along with the URL and other metadata.

In search over information collections, metadata such as **date published** and **author** are often displayed.

Text **summary** (or **snippet**) containing text extracted from the document is also critical.

Currently, the standard results display is a vertical list of textual summaries.

This list is sometimes referred to as the **SERP** (Search Engine Results Page).
In some cases the summaries are excerpts drawn from the full text that contain the query terms.

In other cases, specialized kinds of metadata are shown in addition to standard textual results.

This technique is known as **blended results** or **universal search**.
For example, a query on a term like “rainbow” may return sample images as one entry in the results listing.
A query on the name of a sports team might retrieve the latest game scores and a link to buy tickets.
Nielsen notes that in some cases the information need is satisfied directly in the search results listing.

This makes the search engine an “answer engine”

Displaying the query terms in the context in which they appear in the document:

- Improves the user’s ability to gauge the relevance of the results
- It is sometimes referred to as **KWIC** - keywords in context
- It is also known as query-biased summaries, query-oriented summaries, or user-directed summaries
The visual effect of query **term highlighting** can also improve usability of search results listings

- Highlighting can be shown both in document surrogates in the retrieval results and in the retrieved documents

Determining which text to place in the summary, and how much text to show, is a challenging problem

Often the summaries contain all the query terms in close proximity to one another

However, there is a trade-off between

- Showing contiguous sentences, to aid in coherence in the result
- Showing sentences that contain the query terms
Some results suggest that it is better to show full sentences rather than cut them off.

On the other hand, very long sentences are usually not desirable in the results listing.

Further, the kind of information to display should vary according to the intent of the query.

Longer results are deemed better than shorter ones for certain types of information need.

On the other hand, abbreviated listing is preferable for navigational queries.

Similarly, requests for factual information can be satisfied with a concise results display.
Other kinds of document information can be usefully shown in the search results page.
The page results below show figures extracted from journal articles alongside the search results.
Query Reformulation

There are tools to help users reformulate their query.

One technique consists of showing terms related to the query or to the documents retrieved in response to the query.

A special case of this is spelling corrections or suggestions.

Usually only one suggested alternative is shown: clicking on that alternative re-executes the query.

In years back, the search results were shown using the purportedly incorrect spelling.
Query Reformulation

Microsoft Live’s search results page for the query “IMF”
Query Reformulation

- **Term expansion**: search interfaces are increasingly employing related term suggestions

- Log studies suggest that term suggestions are a somewhat heavily-used feature in Web search

- [Jansen *et al*](#) made a log study and found that 8% of queries were generated from term suggestions

- [Anick *et al*](#) found that 6% of users who were exposed to term suggestions chose to click on them
Some query term suggestions are based on the entire search session of the particular user.

Others are based on behavior of other users who have issued the same or similar queries in the past:

- One strategy is to show similar queries by other users.
- Another is to extract terms from documents that have been clicked on in the past by searchers who issued the same query.
Query Reformulation

- **Relevance feedback** is another method whose goal is to aid in query reformulation.

 The main idea is to have the user indicate which documents are relevant to their query.

 In some variations, users also indicate which terms extracted from those documents are relevant.

 The system then computes a new query from this information and shows a new retrieval set.
Query Reformulation

Nonetheless, this method has not been found to be successful from a usability perspective. Because that, it does not appear in standard interfaces today.

This stems from several factors:

- People are not particularly good at judging document relevance, especially for topics with which they are unfamiliar.
- The beneficial behavior of relevance feedback is inconsistent.
Organizing Search Results

Organizing results into meaningful groups can help users understand the results and decide what to do next.

Popular methods for grouping search results: **category systems** and **clustering**

Category system: meaningful labels organized in such a way as to reflect the concepts relevant to a domain.

- Good category systems have the characteristics of being coherent and relatively complete.
- Their structure is predictable and consistent across search results for an information collection.
Organizing Search Results

The most commonly used category structures are **flat**, **hierarchical**, and **faceted** categories.

Flat categories are simply lists of topics or subjects. They can be used for grouping, filtering (narrowing), and sorting sets of documents in search interfaces.

Most Web sites organize their information into general categories. Selecting that category narrows the set of information shown accordingly.
Organizing Search Results

Some experimental Web search engines automatically organize results into flat categories. Studies using this kind of design have received positive user responses (Dumais et al, Kules et al).

However, it can be difficult to find the right subset of categories to use for the vast content of the Web.

Rather, category systems seem to work better for more focused information collections.
In the early days of the Web, hierarchical directory systems such as Yahoo’s were popular

Hierarchy can also be effective in the presentation of search results over a book or other small collection

The **Superbook system** was an early search interface based on this idea

In the Superbook system, the search results were shown in the context of the table-of-contents hierarchy
Organizing Search Results

The SuperBook interface for showing retrieval results in context

The SuperBook Document Browser Features

- Dynamic "Fisheye" Table of Contents - Automatically generates a dynamic "fisheye view" which helps preserve user's orientation.
- Context-Guided Search - Automatically posts query "hits" next to the topic headings in the Table of Contents - quickly directing searches.
- Rich Indexing - Automatically indexes every occurrence of every word in documents.
- Tailored Text Display - Dynamically formats and highlights text in response to user's search terms.
- Thumbnail Inline Graphics
- Annotation - Add keywords or notes which are instantly indexed.
- HyperText Functions - Show graphics with a click, jump to occurrences of search terms, links within and across documents.
- Multimedia - Links to animations, video and other media and applications.
An alternative representation is the **faceted metadata**. Unlike flat categories, faceted metadata allow the assignment of multiple categories to a single item. Each category corresponds to a different facet (dimension or feature type) of the collection of items.
Organizing Search Results

Figure below shows an example of faceted navigation:

[Image of a faceted search interface]

These terms define your current search. Click the X to remove a term.

- **LOCATION**: Europe
- **MEDIA**: Print

197 items, grouped by MEDIA (View ungrouped items)

- Paintings (10)
- Drawings (6)
- Engravings (5)
- Lithographs (2)
- Photographs (1)
- Mementos (1)
- Models (1)
- Maps (2)

- Scotland (1)
- Spain (1)
- Switzerland (1)
- France (1)
- Germany (1)
- Holland (1)

- Clothing (6)
- Containers (3)
- Food and Drink (4)
- Tools (2)
- Lighting (1)

- Musical Instruments (1)
- Vehicles (1)
- Weapons (1)
- Writing Tools (1)

- Bridge (1)
- Building (1)
- Built Open Space (1)

- Landscape with a (1)
- Animals and Plants (1)

- Birds (1)
- Mammals, Mammal (1)
- Reptiles, Insects (1)
- Parts of Plants (1)
- Trees (1)
Clustering refers to the grouping of items according to some measure of similarity. It groups together documents that are similar to one another but different from the rest of the collection. Such as all the document written in Japanese that appear in a collection of primarily English articles. The greatest advantage of clustering is that it is fully automatable. The disadvantages of clustering include an unpredictability in the form and quality of results, the difficulty of labeling the groups, and the counter-intuitiveness of cluster sub-hierarchies.
Organizing Search Results

- Output produced using Findex clustering
Organizing Search Results

Cluster output on the query “senate”, from Clusty.com

1. **U.S. Senate**
 - Official site of the living symbol of our union of states. Connect with Senators, and learn about Senate committees, legislation, records, art, history, schedules, news, tours...

2. **U.S. Senate Committee on Commerce, Science, & Transportation**
 - Committee jurisdiction includes the Coast Guard, coastal management, communications, highway safety, waterways, interstate commerce, maritime commerce, fisheries, merchant marine...
 - commerce.senate.gov - [cache] - Live, Ask

3. **United States Senate Committee on Banking, Housing and Urban Affairs**
 - United States Senate Committee on Banking, Housing and Urban Affairs
 - banking.senate.gov - [cache] - Live

4. **Senate of the Kingdom of Cambodia**
 - Information about legislative activities, laws, committees, senators and an historical timeline from 1996.

5. **Kansas Senate**
 - Senate roster, ... Home > Senate ... Senate Committees

6. **U.S. Senate Committee on Energy and Natural Resources**
 - Has jurisdiction over energy policy, regulation, and research. Also deals with energy and mineral conservation, ports used for energy transport, irrigation, reclamation, mining...
 - energy.senate.gov - [cache] - Live
Visualization in Search Interfaces

Experimentation with visualization for search has been primarily applied in the following ways:

- Visualizing Boolean syntax
- Visualizing query terms within retrieval results
- Visualizing relationships among words and documents
- Visualization for text mining
Visualizing Boolean Syntax

Boolean query syntax is difficult for most users and is rarely used in Web search.

For many years, researchers have experimented with how to visualize Boolean query specification.

A common approach is to show Venn diagrams.

A more flexible version of this idea was seen in the VQuery system, proposed by Steve Jones.
Visualizing Boolean Syntax

The VQuery interface for Boolean query specification
Visualizing Query Terms

- Understanding the role of the query terms within the retrieved docs can help relevance assessment.
- Experimental visualizations have been designed that make this role more explicit.
- In the TileBars interface, for instance, documents are shown as horizontal glyphs.
- The locations of the query term hits marked along the glyph.
- The user is encouraged to break the query into its different facets, with one concept per line.
- Then, the lines show the frequency of occurrence of query terms within each topic.
Visualizing Query Terms

The TileBars interface
Visualizing Query Terms

Other approaches include placing the query terms in bar charts, scatter plots, and tables.

A usability study by Reiterer et al. compared five views:

- a standard Web search engine-style results listing
- a list view showing titles, document metadata, and a graphic showing locations of query terms
- a color TileBars-like view
- a color bar chart view like that of Veerasamy & Belkin
- a scatter plot view plotting relevance scores against date of publication
Visualizing Query Terms

Field-sortable search results view
Visualizing Query Terms

Colored TileBars view
When asked for subjective responses, the 40 participants of the study preferred, on average, in this order:

- Field-sortable view first
- TileBars
- Web-style listing

The bar chart and scatter plot received negative responses
Another variation on the idea of showing query term hits within documents is to show **thumbnails**

Thumbnails are miniaturized rendered versions of the visual appearance of the document

However, Czerwinski *et al* found that thumbnails are no better than blank squares for improving search results

The negative study results may stem from a problem with the size of the thumbnails

Woodruff *et al* shows that making the query terms more visible via highlighting within the thumbnail improves its usability
Visualizing Query Terms

Textually enhanced thumbnails
Numerous works proposed variations on the idea of placing words and docs on a two-dimensional canvas.

In these works, proximity of glyphs represents semantic relationships among the terms or documents.

An early version of this idea is the VIBE interface. Documents containing combinations of the query terms are placed midway between the icons representing those terms.

The Aduna Autofocus and the Lyberworld projects presented a 3D version of the ideas behind VIBE.
Words and Docs Relationships

The VIBE display
Another idea is to map docs or words from a very high-dimensional term space down into a 2D plane. The docs or words fall within that plane, using 2D or 3D.

This variation on clustering can be done to:

- documents retrieved as a result of a query
- documents that match a query can be highlighted within a pre-processed set of documents

InfoSky and xFIND’s VisIslands are two variations on these starfield displays.
Words and Docs Relationships

InfoSky, from Jonker et al.
xFIND’s VisIslands, from Andrews et al
These views are relatively easy to compute and can be visually striking.

However, evaluations that have been conducted so far provide negative evidence as to their usefulness.

The main problems are that the contents of the documents are not visible in such views.

A more promising application of this kind of idea is in the layout of thesaurus terms, in a small network graph.

Ex: Visual Wordnet
The **Visual WordNet** view of the WordNet lexical thesaurus
Visualization for Text Mining

- Visualization is also used for purposes of analysis and exploration of textual data

- Visualizations such as the **Word Tree** show a piece of a text concordance
 - It allows the user to view which words and phrases commonly precede or follow a given word

- Another example is the **NameVoyager**, which shows frequencies of names for U.S. children across time
The Word Tree visualization, on Martin Luther King’s *I have a dream* speech, from [Wattenberg *et al*](#).
Visualization for Text Mining

The popularity of baby names over time (names beginning with JA), from babynamewizard.com
Visualization for Text Mining

Visualization is also used in search interfaces intended for analysts.

An example is the TRIST information triage system, from Proulx et al.

In this system, search results is represented as document icons.

Thousands of documents can be viewed in one display.

It supports multiple linked dimensions that allow for finding characteristics and correlations among the docs.

Its designers won the IEEE Visual Analytics Science and Technology (VAST) contest for two years running.
Visualization for Text Mining

The TRIST interface with results for queries related to Avian Flu
Design and Evaluation

- User interface design: a field of Human-Computer Interaction (HCI)

- This field studies how people think about, respond to, and use technology

- User-centered design: a set of practices developed to facilitate the design of interfaces

- The design process begins by determining what the intended users’ goals are

- Then, the interface is devised to help people achieve those goals by completing a series of tasks
Design and Evaluation

Goals in the domain of information access can range quite widely:
- From finding a plumber to keeping informed about a business competitor
- From writing a publishable scholarly article to investigating an allegation of fraud

The design of interfaces is an iterative process, in which the goals and tasks are elucidated via user research.
Design and Evaluation

Evaluating a user interface is often different from evaluating a ranking algorithm or a crawling technique.

- A crawler can be assessed by crisp quantitative metrics such as coverage and freshness.
- A ranking algorithm can be evaluated by precision, recall, and speed.

The quality of a user interface is determined by how people respond to it.

- Subjective responses are as, if not more, important than quantitative measures.
- If a person has a choice between two systems, they will use the one they prefer.
The reasons for preference may be determined by a host of factors:

- Speed, familiarity, aesthetics, preferred features, or perceived ranking accuracy

Often the preferred choice is the familiar one
Design and Evaluation

- How best to evaluate a user interface depends on the current stage in the development cycle.

- When starting with a new design or idea, **discount usability** methods are typically used:
 - Example: showing a few users different designs asking them to indicate which parts are promising and which are not.

- Another commonly used discount evaluation method is **heuristic evaluation**:
 - Usability experts “walk through” a design and evaluate the functionality in accordance with a set of design guidelines.
A formal experiment must be carefully designed to take into account potentially confounding factors.

For instance, it is important for participants to be motivated to do well on the task.

This kind of study can uncover important subjective results.

Such as whether a new design is strongly preferred over a baseline.

However, it is difficult to find accurate quantitative differences with a small number of participants.
Design and Evaluation

Another problem: the timing variable is not the right measure for evaluating an interactive search session

A tool that allows the searcher to learn about their subject matter as they search may be more beneficial, but take more time

Two approaches to evaluating search interfaces have gained in popularity in recent years

One is to conduct a **longitudinal study**

- Participants use a new interface for an extended period of time, and their usage is monitored and logged
- Evaluation is based both on log analysis and questionnaires and interviews with the participants
Another evaluation technique is to perform experiments on already heavily-used Web sites.

Consider a search engine that receives millions of queries a day.

A randomly selected subset of the users is shown a new design.

Their actions are logged and compared to another randomly selected control group that continues to use the existing interface.

This approach is often referred to as bucket testing, A/B testing.